Characterizing trees with large Laplacian energy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Sets of Noncospectral Graphs with Equal Laplacian Energy

Several alternative definitions to graph energy have appeared in literature recently, the first among them being the Laplacian energy, defined by Gutman and Zhou in [Linear Algebra Appl. 414 (2006), 29–37]. We show here that Laplacian energy apparently has small power of discrimination among threshold graphs, by showing that, for each n, there exists a set of n mutually noncospectral connected ...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Laplacian Sum-Eccentricity Energy of a Graph

We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...

متن کامل

Sequences Characterizing k-Trees

A non-decreasing sequence of n integers is the degree sequence of a 1-tree (i.e., an ordinary tree) on n vertices if and only if there are least two 1’s in the sequence, and the sum of the elements is 2(n − 1). We generalize this result in the following ways. First, a natural generalization of this statement is a necessary condition for k-trees, and we show that it is not sufficient for any k >...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.01.028